Abstract
We use the equation-of-motion technique and non-equilibrium Green's function theory to study the Kondo effect and the Fano effect in triple quantum dots (QDs) coupled to symmetrically ferromagnetic leads whose magnetic moments are noncollinear. We address the question of how the noncollinear ferromagnetic leads influence the Kondo effect and how the side-coupled QDs present Fano interference. The results show that the spin splitting of the density of state (DOS) takes place in an intermediate direction between the magnetic moments in the two leads. When interdot coupling strength ti is nonzero, Fano interference begins to play a major role in complicating the DOS of QD0.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.