Abstract

Abstract We present ZTF18abvkwla (the “Koala”), a fast blue optical transient discovered in the Zwicky Transient Facility (ZTF) One-Day Cadence (1DC) Survey. ZTF18abvkwla has a number of features in common with the groundbreaking transient AT 2018cow: blue colors at peak ( mag), a short rise time from half-max of under two days, a decay time to half-max of only three days, a high optical luminosity ( mag), a hot (≳40,000 K) featureless spectrum at peak light, and a luminous radio counterpart. At late times ( ), the radio luminosity of ZTF18abvkwla ( at 10 , observer-frame) is most similar to that of long-duration gamma-ray bursts (GRBs). The host galaxy is a dwarf starburst galaxy ( , ) that is moderately metal-enriched ( ), similar to the hosts of GRBs and superluminous supernovae. As in AT2018cow, the radio and optical emission in ZTF18abvkwla likely arise from two separate components: the radio from fast-moving ejecta ( ) and the optical from shock-interaction with confined dense material (<0.07 M ⊙ in ). Compiling transients in the literature with and mag, we find that a significant number are engine-powered, and suggest that the high peak optical luminosity is directly related to the presence of this engine. From 18 months of the 1DC survey, we find that transients in this rise-luminosity phase space are at least two to three orders of magnitude less common than CC SNe. Finally, we discuss strategies for identifying such events with future facilities like the Large Synoptic Survey Telescope, as well as prospects for detecting accompanying X-ray and radio emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.