Abstract
The discrete Klein–Gordon equation on a two-dimensional square lattice satisfies an ℓ1↦ℓ∞ dispersive bound with polynomial decay rate |t|−3/4. We determine the shape of the light cone for any choice of the mass parameter and relative propagation speeds along the two coordinate axes. Fundamental solutions experience the least dispersion along four lines interior to the light cone rather than along its boundary, and decay exponentially to arbitrary order outside the light cone. The overall geometry of the propagation pattern and its associated dispersive bounds are independent of the particular choice of parameters. In particular there is no bifurcation of the number or type of caustics that are present. The dispersive bounds imply global well-posedness for small solutions of a nonlinear discrete Klein–Gordon equation.The discrete Klein–Gordon equation is a classical analogue of the quantum harmonic lattice. In the quantum setting, commutators of time-shifted observables experience the same decay rates as the corresponding Klein–Gordon solutions, which depend in turn on the relative location of the observables' support sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.