Abstract

In this work, we report on the Kirkendall-induced hollowing process occurring upon thermal oxidation of gold–copper (Au–Cu) alloy nanowires and nanodots. Contrary to elemental metals, the oxidation reaction results in the formation of gold nanostructures trapped inside hollow copper oxide nanoshells. We particularly focus on the thermally activated reshaping mechanism of the gold phase forming the core. Using scanning transmission electron microscopy coupled to energy dispersive X-ray spectroscopy mapping, we show that such a reshaping is a consequence to the reorganization of gold at the atomic level. The gold nanostructures forming the core were found to be strongly dependent on the chemical composition of the alloy and the oxidation temperature. By selecting the appropriate annealing conditions (i.e., duration, temperature), one can easily synthesize various heteronanostructures: wire-in-tube, yolk–shell, oxide nanotubes embedding or decorated by Au nanospheres. The advanced understanding of the Kirken...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call