Abstract

Abstract Resistance distance was introduced by Klein and Randić as a generalisation of the classical distance. The Kirchhoff index Kf(G) of a graph G is the sum of resistance distances between all unordered pairs of vertices. In this article we characterise the extremal graphs with the maximal Kirchhoff index among all non-trivial quasi-tree graphs of order n. Moreover, we obtain a lower bound on the Kirchhoff index for all non-trivial quasi-tree graphs of order n.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.