Abstract
The Kirchhoff–Helmholtz integral is a powerful tool to model the scattered wavefield from a smooth interface in acoustic or isotropic elastic media due to a given incident wavefield and observation points sufficiently far away from the interface. This integral makes use of the Kirchhoff approximation of the unknown scattered wavefield and its normal derivative at the interface in terms of the corresponding quantities of the known incident field. An attractive property of the Kirchhoff–Helmholtz integral is that its asymptotic evaluation recovers the zero-order ray theory approximation of the reflected wavefield at all observation points where that theory is valid. Here, we extend the Kirchhoff–Helmholtz modeling integral to general anisotropic elastic media. It uses the natural extension of the Kirchhoff approximation of the scattered wavefield and its normal derivative for those media. The anisotropic Kirchhoff–Helmholtz integral also asymptotically provides the zero-order ray theory approximation of the reflected response from the interface. In connection with the asymptotic evaluation of the Kirchhoff–Helmholtz integral, we also derive an extension to anisotropic media of a useful decomposition formula of the geometrical spreading of a primary reflection ray.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.