Abstract
The mitochondrial DNA (kinetoplast DNA) of the trypanosomatid Crithidia fasciculata has an unusual structure composed of minicircles and maxicircles topologically interlocked into a single network and organized in a disc-shaped structure at the base of the flagellum. We previously purified a structure-specific endonuclease (SSE1), based on its RNase H activity, that is enriched in isolated kinetoplasts. The endonuclease gene has now been cloned, sequenced, and found to be closely related to the 5' exonuclease domain of bacterial DNA polymerase I proteins. Although the protein does not contain a typical mitochondrial leader sequence, the enzyme is shown to colocalize with a type II DNA topoisomerase and a DNA polymerase beta at antipodal sites flanking the kinetoplast disc. Cell synchronization studies with an epitope-tagged construct show that the localization of the endonuclease to the antipodal sites varies in a cell cycle-dependent manner similar to that of the DNA polymerase beta [Johnson, C. E. & Englund, P. T. (1998) J. Cell Biol. 143, 911-919]. Immunofluorescent localization of SSE1 to the antipodal sites is only observed during kinetoplast replication. Together, these results suggest a point of control for kinetoplast DNA replication through the regulation of the availability of DNA replication proteins and a possible role for the antipodal sites in removal of RNA primers and the repair of gaps in newly replicated minicircles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.