Abstract

Experimental evidence is presented on the translocation of vitamin D metabolite, 1,25-(OH)₂D₃, from the membrane to the nucleus in osteoblast progenitor cells. A mathematical model permitting traversal of the cytoplasm at either a fixed velocity or by diffusion is formulated in order to determine whether transport along the cytoskeletal tracks is more consistent with the observed spatial-temporal distribution than diffusion, and it is so found. The model includes reactions in the nucleus involving D₃ to form other compounds, such as protegerin, and thus also makes predictions of the concentrations of these compounds in various regions of the cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.