Abstract

In order to obtain the kinetic parameters during typical medical waste pyrolysis, the typical medical waste is pyrolysed in a micro-fluidised bed reactor. The gases evolved from the typical medical waste pyrolysis are analysed by a mass spectrometer, and only H2, CH4, C2H2, C2H4, C2H6, C3H6, C3H8 and C4H4 are observed. According to the gaseous product concentration profiles, the activation energies of gaseous formation are calculated based on the Friedman approach, and the average activation energies of H2, CH4, C2H2, C2H4, C2H6, C3H6, C3H8 and C4H4 formation during typical medical waste pyrolysis are in sequence as 65.10, 39.98, 35.17, 38.71, 40.75, 41.79, 58.57 and 63.95 kJ mol-1. Moreover, the activation energy with respect to the gases mixture formation is 52.70 kJ mol-1. Hence, it is concluded that the activation energy of typical medical waste pyrolysis is 52.70 kJ mol-1. The model-fitting method is used to determine the mechanism model of medical waste pyrolysis. The results indicate that the chemical reaction ( n = 1) model (G(x) = -ln(1-x)) is the optimum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.