Abstract

Protein kinase C (PKC) is a family of serine/threonine kinases that play an important role in mediating intracellular signal transduction in eukaryotes. U937 cells were exposed to microgravity during a space shuttle flight and stimulated with a radiolabeled phorbol ester ([3H]PDBu) to both specifically label and activate translocation of PKC from the cytosol to the particulate fraction of the cell. Although significant translocation of PKC occurred at all g levels, the kinetics of translocation in flight were significantly different from those on the ground. In addition, the total quantity of [3H]PDBu binding PKC was increased in flight compared to cells at 1 g on the ground, whereas the quantity in hypergravity (1.4 g) was decreased with respect to 1 g. Similarly, in purified human peripheral blood T cells the quantity of PKCdelta varied in inverse proportion to the g level for some experimental treatments. In addition to these novel findings, the results confirm earlier studies which showed that PKC is sensitive to changes in gravitational acceleration. The mechanisms of cellular gravisensitivity are poorly understood but the demonstrated sensitivity of PKC to this stimulus provides us with a useful means of measuring the effect of altered gravity levels on early cell activation events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call