Abstract

The reduction of Au(III) with hydrazine monohydrate in micellar Triton N-42 solutions was shown to be an autocatalytic reaction. Its rate constants were calculated. The growth of a gold nucleus proceeded as a result of surface reduction until the polar micelle nanocavity was completely filled. Calculations according to the Derjaguin-Landau-Verway-Overbeck theory showed that the fate of nanoparticles formed depended on interparticle interaction energy. At a small radius of particles, high surface potential, and fairly thick surfactant surface layer, stable systems were formed. The coagulation zones were calculated depending on the structural parameters of nanoparticles and micelles. If a nanoparticle grew larger than 6.1 nm at a surface potential lower than 10 mV and surface layer thickness ∼1.6 nm, the potential well depth exceeded 3/2 kT in magnitude, and coagulation occurred in the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.