Abstract

The behaviour of non-stoichiometric hydroxyapatite (HA) during the calcination in a solid bed was investigated. The structural properties are described in terms of the specific surface area. Calcination led to a significant decrease of the specific surface area by particle coalescence and densification. Hydroxyapatite begins to shrink near 780 °C and reaches 97% theoretical density at 1100 °C. The specific surface area and density variations are caused both by sintering and chemical reaction. Sintering data from these solids were correlated as a function of time and temperature. The rate of sintering is assumed to obey an Arrhenius equation. These results are compared with a number of literature models describing the mechanism of sintering kinetics using the specific surface area, and a good agreement is observed. The kinetic equation used is based on sintering driven by the curvature gradient in the interparticle neck region associated with initial stage sintering. Then, the decline in specific surface area is accurately described by the empirical equation of the form d S/d t=− B( T) k b . The changing value of b, also known as the “order” of the reaction, suggests that the diffusion mechanism for loss of surface area may be a function of the temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.