Abstract
A study was conducted to examine the effect of starch and nitrogen digestion kinetics on broiler performance using sorghum-based diets as a model. Three sorghum varieties with red, white and yellow pericarps and three feed forms, mash, intact pellets and reground pellets, constituted a 3 × 3 factorial array of dietary treatments. Starch and nitrogen digestion kinetics were determined using an exponential mathematical model to relate digestion coefficients in the proximal jejunum, proximal ileum and distal ileum with mean retention times in each segment. There were interactions between sorghum variety and feed form for starch and nitrogen digestion kinetics. Steam-pelleting at a conditioning temperature of 90°C (unprocessed mash versus reground pellets) substantially influenced starch digestion rate in red and yellow sorghum-based diets, but not in white sorghum-based diets. Alternatively, with nitrogen digestion rate, there were no significant differences in yellow sorghum-based diets between feed forms but there were in red and white sorghum-based diets. The digestion rate of starch was more rapid than nitrogen, especially in the proximal jejunum. Starch digestion rates were significantly correlated with nitrogen retention but this was not the case with nitrogen digestion rates. The rate of glucose absorption from predicted glycaemic indices was highly correlated with enhanced feed efficiency. Thus this study demonstrates that even under ad libitum feeding regimes, kinetics of starch and protein digestion regulated feed efficiency and nitrogen retention in broiler chickens. The dynamics of starch and protein digestion were more accurate indicators of feed efficiency and nitrogen retention than apparent ileal starch and nitrogen digestibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.