Abstract

The kinetics of glass transition in selenide glasses As10.2Se89.8 and As9Se90Bi in early stage of physical ageing process has been investigated by parallel differential scanning calorimetry (DSC) and exoelectron emission (EEE). It has been found that the glass transition process occurring in investigated glasses is evidenced by peaks on EEE intensity and DSC curves. Admixture of bismuth causes a distinct lowering of the temperature of glass transitions process both in the surface layer and in the volume. The addition of Bi causes a decrease in the value of the activation energy for glass transition process in both the volume and in the surface layer, thus reducing the thermal stability of investigated glasses. Physical ageing in Se-rich chalcogenide glasses leads to a significant increase of endothermic peak area A, temperature of glass transition T g and decrease of the activation energy value E. All these effects are strongly dependent on glass composition.

Highlights

  • Vitreous chalcogenide semiconductors are known for long time as materials for potential applications, e.g. in optoelectronics [1,2,3]

  • The kinetics of glass transition in selenide glasses As10.2Se89.8 and As9Se90Bi in early stage of physical ageing process has been investigated by parallel differential scanning calorimetry (DSC) and exoelectron emission (EEE)

  • The addition of Bi causes a decrease in the value of the activation energy for glass transition process in both the volume and in the surface layer, reducing the thermal stability of investigated glasses

Read more

Summary

Introduction

Vitreous chalcogenide semiconductors are known for long time as materials for potential applications, e.g. in optoelectronics [1,2,3]. Abstract The kinetics of glass transition in selenide glasses As10.2Se89.8 and As9Se90Bi in early stage of physical ageing process has been investigated by parallel differential scanning calorimetry (DSC) and exoelectron emission (EEE).

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.