Abstract

Aim: In this study, ripening and heterogeneity in density-sorted berries were investigated, with the aim of more clearly understanding the kinetics of water uptake and sugar, acid and anthocyanin accumulation in the fruit of a new, disease-resistant hybrid.Methods and results: The 3184-1-9N hybrid, grown in a semi-arid climate in the South of France, was used. Its genotype is the result of several backcrosses of a Muscadinia ´ Vitis vinifera F1 hybrid with several V. vinifera varieties. From the end of the green plateau to the over-ripening stage, single berries were sampled weekly and sorted by density, to monitor the advancement of ripening and the heterogeneity of grapevine fruit development at population level. Fruit firmness, density, fresh weight, primary metabolite content (sugars and organic acids), secondary metabolite content (anthocyanins), potassium content and pH were measured in berries from each density class. The data showed that softening and hexose accumulation occurred before fruit pigmentation. Based on malic acid and anthocyanin concentration relative to sugar concentration in density-sorted grapes, malic acid breakdown or dilution was promoted and anthocyanin accumulation reduced in late- or slow-ripening berries. In the different population structures in two experimental plots, berries with similar sugar concentration showed considerable heterogeneity in terms of volume and anthocyanin content, whereas pH, potassium content and acid content showed much more homogeneous kinetics.Conclusions: During ripening, analysis of density-sorted berries provides useful information about sugar concentration heterogeneity and its relation with organic acid and anthocyanin content. The stage at which grapes can be considered ripe may be precisely determined through periodic determination of mean berry volume or weight, to detect the cessation of phloem unloading and the onset of berry shrivelling. However, ripening and shrivelling berries generally coexist in the harvested population. Asynchronous berry development and berry weight heterogeneity greatly complicate determination of the timing of developmental events that are regulated at the single-berry level. Therefore, analysis of individual berries would seem to be an indispensable component of investigations of berry growth and development.Significance and impact of the study: Plotting water uptake and solute accumulation relative to sugar accumulation (as an internal clock) provides an original way to display grapevine fruit development data. Analysis of density-sorted berries has identified the relatively invariant fruit features, such as the minimum concentration of tartaric acid, the stability of potassium accumulation and pH, and conversely, the huge variations in berry size.

Highlights

  • Viticulture plays a considerable socioeconomic role in many countries

  • Skin coloration was delayed from the start of sugar accumulation, which is indicated by berry softening (Robin et al, 1997; Castellarin et al, 2015)

  • The results of the present study show that 31 days is enough for any berry of the GX genotype to reach physiological maturity, this genotype is generally harvested 45–55 days after veraison

Read more

Summary

Introduction

Viticulture plays a considerable socioeconomic role in many countries. Vine-growing areas represent more than 8 million hectares worldwide, making grapes one of the most important fruit crops (Myles et al, 2011; Aleixandre et al, 2014). In France, for example, the wine industry represents a yearly economic activity of about 11.4 billion euros (FranceAgrimer, no date). Wine grape is one of the most sensitive crops to climate changes, due to the influence of meteorological factors in determining wine composition (Webb et al, 2008). Its growth is characterized by a double-sigmoid growth pattern, with two phases of growth separated by a period of non-growth termed the lag phase or green plateau (Vicens, 2007; Thomas et al, 2008)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call