Abstract

The kinetics of the binding of cytochalasin B to the proton-linked L-arabinose (AraE) and D-galactose (GalP) symporters from Escherichia coli and to the human erythrocyte glucose transporter (GLUT1) have been investigated by exploiting the changes in protein fluorescence that occur upon binding the ligand. Steady-state measurements yielded Kd values of 1.1, 1.9 and 0.14 microM for the AraE, GalP and GLUT1 proteins, respectively. The association and dissociation rate constants for the binding of cytochalasin B have been determined by stopped-flow spectroscopy. In each case, the apparent Kd was calculated from the corresponding rate constants, yielding values of 1.5, 0.4 and 1.6 microM for AraE, GalP and GLUT1, respectively. The differences between these apparent Kd values and those measured by fluorescence titration is interpreted in terms of the following three step mechanism where CB represents cytochalasin B: [formula: see text] The transporter is proposed to alternate between two different conformational forms (T1 and T2), with cytochalasin B binding only to the T2 conformation, to induce a further conformational transition of the transporter to the T3 form. The values for the overall dissociation constants show that the T1 conformation is favoured by AraE and GalP in the absence of ligands, but the T2 conformation is favoured by GLUT1. Thus, the binding of cytochalasin B to GLUT1 alters the equilibrium towards the T3(CB) conformational state, producing the observed tight binding, in contrast to the changes in the equilibrium observed with the binding of cytochalasin B to AraE and GalP. A thermodynamic analysis of these conformational transitions has been performed. The T1 and T2 conformations may represent transporter states in which the binding site is facing outwards and inwards, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.