Abstract

Photopolymerization, which uses light rather than heat to initiate polymerization, is a facile technique used to fabricate adhesives, protective coatings, thin films, photoresists, dental restoratives, and other materials. Epoxide monomers, which are polymerized via cationic photoinitiation, have received less attention in fundamental research in comparison to free radical polymerized acrylate monomers. The characterization of propagation mechanisms, network structures, and physical properties is yet lacking. This project focused on the reactivity and physical properties of 3,4epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate (EEC), and the kinetic and physical effects of chain transfer agents (CTAs) in EEC based formulations were characterized. This characterization was carried out using real-time Raman spectroscopy, real-time infrared spectroscopy, dynamic mechanical analysis, simple gel fraction measurements, and atomic force microscopy. The effects of water, organic alcohols, processing conditions (e.g., UV light intensity, humidity, post-illumination curing temperature), and photoinitiation systems were investigated. In general, increasing the concentration of CTAs in a crosslinking epoxide resin increases the rate of polymerization and the overall epoxide conversion level. High CTA levels also correspond to lower glass transition temperatures (Tg) and lower crosslink densities. A post-illumination annealing was critical in obtaining stable physical properties for high Tg epoxide materials. In addition, humidity (water being the most universal contaminant type of CTA) was found to impact the surface properties of an epoxide polymer negatively by reducing the surface hardness. Hybrid acrylate-epoxide systems are much more complex and unpredictable in curing behavior. The use of hydroxy acrylates in hybrid systems allows for grafting between the epoxide and the acrylate domains, via the AM mechanism. Another intricacy

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.