Abstract

Serine proteinase inhibitors (serpins) form enzymatically inactive, 1:1 complexes (denoted E*I*) with their target proteinases that release free enzyme and cleaved inhibitor only very slowly. The mechanism of E*I* formation is incompletely understood and continues to be a source of controversy. Kinetic evidence exists that formation of E*I* proceeds via a Michaelis complex (E.I) and so involves at least two steps. In this paper, we determine the rate of E*I* formation from alpha-chymotrypsin and alpha1-antichymotrypsin using two approaches: first, by stopped-flow spectrofluorometric monitoring of the fluorescent change resulting from reaction of alpha-chymotrypsin with a fluorescent derivative of alpha1-antichymotrypsin (derivatized at position P7 of the reactive center loop); and second, by a rapid mixing/quench approach and SDS-polyacrylamide gel electrophoresis analysis. In some cases, serpins are both substrates and inhibitors of the same enzyme. Our results indicate the presence of an intermediate between E.I and E*I* and suggest that the partitioning step between inhibitor and substrate pathways precedes P1-P1' cleavage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.