Abstract

The NAD-dependent DNA ligase is an excellent target for the discovery of antibacterial agents with a novel mode of action. In this work the DNA ligase from Streptococcus pneumoniae was investigated for its steady-state kinetic parameters and inhibition by compounds with an adenosine substructure. Inhibition by substrate DNA that was observed in the enzyme turnover experiments was verified by direct binding measurements using isothermal titration calorimetry (ITC). The substrate-inhibited enzyme form was identified as deadenylated DNA ligase. The binding potencies of 2-(butylsulfanyl) adenosine and 2-(cyclopentyloxy) adenosine were not significantly affected by the presence of the enzyme-bound DNA substrate. Finally, a mutant protein was prepared that was known to confer resistance to the adenosine compounds’ antibacterial activity. The mutant protein was shown to have little catalytic impairment yet it was less susceptible to adenosine compound inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.