Abstract

The chemiosmotic hypothesis predicts that the mechanism by which weak acids uncouple oxidative phosphorylation in mitochondria is identical to the mechanism by which they transport hydrogen ions across artificial bilayer membranes. We report here the results of a kinetic study of uncoupler-mediated hydrogen ion transport across bilayer membranes. We made electrical relaxation measurements on black lipid membranes exposed to the substituted benzimidazole 5,6-dichloro-2-trifluoromethylbenzimidazole. The simplest model consistent with our experimental data allowed us to deduce values for adsorption coefficients and rate constants. Our major conclusions are that the back diffusion of the neutral species is the rate limiting step for the steady state transport of hydrogen ions, that both the neutral and charged forms of the uncoupler adsorb strongly to the interfaces, and that the reactions at the membrane-solution interfaces occur sufficiently rapidly for equilibrium to be maintained. Independent measurements of the adsorption coefficients of both the neutral and anionic forms of the weak acid and also of the permeability of the membrane to the neutral form agreed well with the values deduced from the kinetic study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call