Abstract

In this study we investigated the as-grown [0001] Si surface of modified Lely-grown 6H-SiC using atomic force microscopy. We found micropipes that lie in the center of growth spirals whose radii ranged between 25 and 6000 nm. The screw component of the Burgers vector of the micropipe, which is synonymous with the total step height of the growth spiral, ranged from 1 to 25 unit-cells (1.5–37.5 nm). We fitted Frank's theory of hollow core dislocations, as modified by Cabrera and Levine concerning kinetic effects, to these experimental results and obtained values for surface energy and supersaturation at the inner side of the micropipe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.