Abstract
Abstract We propose a transport theory for the kinetic evolution of solar-wind electrons in the heliosphere. We derive a gyro-averaged kinetic transport equation that accounts for the spherical expansion of the solar wind and the geometry of the Parker spiral magnetic field. To solve our three-dimensional kinetic equation, we develop a mathematical approach that combines the Crank–Nicolson scheme in velocity space and a finite-difference Euler scheme in configuration space. We initialize our model with isotropic electron distribution functions and calculate the kinetic expansion at heliocentric distances from 5 to 20 solar radii. In our kinetic model, the electrons evolve mainly through the combination of ballistic particle streaming, the magnetic mirror force, and the electric field. By applying fits to our numerical results, we quantify the parameters of the electron strahl and the core part of the electron velocity distributions. The strahl fit parameters show that the density of the electron strahl is around 7% of the total electron density at a distance of 20 solar radii, the strahl bulk velocity and strahl temperature parallel to the background magnetic field stay approximately constant beyond a distance of 15 solar radii, and β ∥s (i.e., the ratio of the strahl parallel thermal pressure to the magnetic pressure) is approximately constant with heliocentric distance at a value of about 0.02. We compare our results with data measured by the Parker Solar Probe. Furthermore, we provide theoretical evidence that the electron strahl is not scattered by the oblique fast-magnetosonic/whistler instability in the near-Sun environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.