Abstract
How the structural changes of each active material in mixed cathode systems take place at different charge–discharge rates is quite important in the application of the system in which the mixed cathode materials with different rate capabilities are formed into one composite electrode. Here we report the results of the real time structural change studies of mixed LiMn 2O 4–LiNi 1/3Co 1/3Mn 1/3O 2 composite cathode in a Li-ion cell by using in situ synchrotron-based time resolved x-ray diffraction (TR-XRD) technique. The layer structured component in the mixed composite cathode system shows less utilization at fast discharge rate (high power mode) whereas the spinel structured component is fully utilized. This clearly demonstrates that the reduced capacity at fast discharge rate for this system is caused by the less utilization of the layer structured component. The real time monitoring of the structural behavior at various discharge rates is a great tool to design the best ratios of active materials with different rate capabilities in the mixed cathode systems for different applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.