Abstract

In this work, the kinetic characterization of hydrogen production by the photofermentative bacteria Rhodopseudomonas faecalis RLD-53 was investigated at different growth phase. During entire fermentation, 89.30% of total biomass was accumulated in exponential growth phase, while hydrogen yield was only 1.82 mol H2/mol acetate at the expense of 51.25% substrate. In the stationary phase, biomass synthesis was minimal (7.51%), and 38.17% of the substrate was directly converted into hydrogen. As a result, hydrogen (59.19%) was mainly produced in stationary phase with highest hydrogen yield of 3.67 mol H2/mol acetate. Consequently, bacteria in stationary phase were most effective for hydrogen production. Based on these findings, a novel membrane photobioreactor was developed to retain bacteria during stationary phase in reactor through membrane separation. Maximum rate (32.82 ml/l/h) and yield (3.27 mol H2/mol acetate) of hydrogen production were achieved using membrane photobioreactor under the continuous operation. Therefore, using bacteria in stationary phase as hydrogen producer can offer considerable benefits for enhancing photo-hydrogen production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.