Abstract

We report here that disruption of a recently discovered kinesin-like protein in Drosophila melanogaster, KLP61F, results in a mitotic mutation lethal to the organism. We show that in the absence of KLP61F function, spindle poles fail to separate, resulting in the formation of monopolar mitotic spindles. The resulting phenotype of metaphase arrest with polyploid cells is reminiscent of that seen in the fungal bimC and cut7 mutations, where it has also been shown that spindle pole bodies are not segregated. KLP61F is specifically expressed in proliferating tissues during embryonic and larval development, consistent with a primary role in cell division. The structural and functional homology of the KLP61F, bimC, cut7, and Eg5 kinesin-like proteins demonstrates the existence of a conserved family of kinesin-like molecules important for spindle pole separation and mitotic spindle dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.