Abstract

ABSTRACTOrthorhombic models are often used in the seismic industry nowadays to describe azimuthal and polar anisotropy and reasonably realistic in capturing the features of the earth interior. It is challenging to handle so many model parameters in the seismic data processing. In order to reduce the number of the parameters for P wave, the acoustic orthorhombic medium is proposed by setting all on‐axis S wave velocities to zero. However, due to the coupled behaviour for P and S waves in the orthorhombic model, the ‘S wave artefacts’ are still remained in the acoustic orthorhombic model, which kinematics needs to be defined and analysed. In this paper, we analyse the behaviour of S wave in acoustic orthorhombic media. By analysis of the slowness surface in acoustic orthorhombic media, we define the S waves (or S wave artefacts) that are more complicated in shape comparing to the one propagating in an acoustic transversely isotropic medium with a vertical symmetry axis. The kinematic properties of these waves are defined and analysed in both phase and group domain. The caustics, amplitude and the multi‐layered case for S wave in acoustic orthorhombic model are also discussed. It is shown that there are two waves propagating in this acoustic orthorhombic medium. One of these waves is similar to the one propagating in acoustic vertical symmetry axis media, whereas another one has a very complicated shape consisting of two crossing surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.