Abstract

In this paper the kinematics of damage for finite strain, elasto-plastic deformation is introduced using the fourth-order damage effect tensor through the concept of the effective stress within the framework of continuum damage mechanics. In the absence of the kinematic description of damage deformation leads one to adopt one of the following two different hypotheses for the small deformation problems. One uses either the hypothesis of strain equivalence or the hyphothesis of energy equivalence in order to characterize the damage of the material. The proposed approach in this work provides a general description of kinematics of damage applicable to finite strains. This is accomplished by directly considering the kinematics of the deformation field and furthermore it is not confined to small strains as in the case of the strain equivalence or the strain energy equivalence approaches. In this work, the damage is described kinematically in both the elastic domain and plastic domain using the fourth order damage effect tensor which is a function of the second-order damage tensor. The damage effect tensor is explicitly characterized in terms of a kinematic measure of damage through a second-order damage tensor. Two kinds of second-order damage tensor representations are used in this work with respect to two reference configurations. The finite elasto-plastic deformation behavior with damage is also viewed here within the framework of thermodynamics with internal state variables. Using the consistent thermodynamic formulation one introduces seperately the strain due to damage and the associated dissipation energy due to this strain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.