Abstract

ABSTRACT We present Magellan/M2FS spectroscopy of four recently discovered Milky Way star clusters (Gran 3/Patchick 125, Gran 4, Garro 01, and LP 866) and two newly discovered open clusters (Gaia 9 and Gaia 10) at low Galactic latitudes. We measure line-of-sight velocities and stellar parameters ([Fe/H], log g, Teff, and [Mg/Fe]) from high-resolution spectroscopy centred on the Mg triplet and identify 20–80 members per star cluster. We determine the kinematics and chemical properties of each cluster and measure the systemic proper motion and orbital properties by utilizing Gaia astrometry. We find Gran 3 to be an old, metal-poor (mean metallicity of [Fe/H] = −1.83) globular cluster located in the Galactic bulge on a retrograde orbit. Gran 4 is an old, metal-poor ([Fe/H] = −1.84) globular cluster with a halo-like orbit that happens to be passing through the Galactic plane. The orbital properties of Gran 4 are consistent with the proposed LMS-1/Wukong and/or Helmi streams merger events. Garro 01 is metal-rich ([Fe/H] = −0.30) and on a near-circular orbit in the outer disc but its classification as an open cluster or globular cluster is ambiguous. Gaia 9 and Gaia 10 are among the most distant known open clusters at $R_{\mathrm{GC}}\sim 18,~21.2~\mathrm{\, kpc}$ and most metal-poor with [Fe/H] ∼−0.50, −0.34 for Gaia 9 and Gaia 10, respectively. LP 866 is a nearby, metal-rich open cluster ([Fe/H] = +0.10). The discovery and confirmation of multiple star clusters in the Galactic plane shows the power of Gaia astrometry and the star cluster census remains incomplete.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call