Abstract

Abstract Dual-Doppler, polarimetric radar observations and precipitation efficiency (PE) calculations are used to analyze subtropical heavy rainfall events that occurred in southern Taiwan from 14 to 17 June 2008 during the Southwest Monsoon Experiment/Terrain-Influenced Monsoon Rainfall Experiment (SoWMEX/TiMREX) field campaign. Two different periods of distinct precipitation systems with diverse kinematic and microphysical characteristics were investigated: 1) prefrontal squall line (PFSL) and 2) southwesterly monsoon mesoscale convective system (SWMCS). The PFSL was accompanied by a low-level front-to-rear inflow and pronounced vertical wind shear. In contrast, the SWMCS had a low-level southwesterly rear-to-front flow with a uniform vertical wind field. The PFSL (SWMCS) contained high (low) lightning frequency associated with strong (moderate) updrafts and intense graupel–rain/graupel–small hail mixing (more snow and less graupel water content) above the freezing level. It is postulated that the reduced vertical wind shear and enhanced accretional growth of rain by high liquid water content at low levels in the SWMCS helped produce rainfall more efficiently (53.1%). On the contrary, the deeper convection of the PFSL had lower PE (45.0%) associated with the evaporative loss of rain and the upstream transport of liquid water to form larger stratiform regions. By studying these two events, the dependence of PE on the environmental and microphysical factors of subtropical heavy precipitation systems are investigated by observational data for the first time. Overall, the PE of the convective precipitation region (47.9%) from 14 to 17 June is similar to past studies of convective precipitation in tropical regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.