Abstract
The existence of K\"ahler-Einstein metrics on a compact K\"ahler manifold has been the subject of intensive study over the last few decades, following Yau's solution to Calabi's conjecture. The Ricci flow, introduced by Richard Hamilton has become one of the most powerful tools in geometric analysis. We study the K\"ahler-Ricci flow on minimal surfaces of Kodaira dimension one and show that the flow collapses and converges to a unique canonical metric on its canonical model. Such a canonical is a generalized K\"ahler-Einstein metric. Combining the results of Cao, Tsuji, Tian and Zhang, we give a metric classification for K\"aher surfaces with a numerical effective canonical line bundle by the K\"ahler-Ricci flow. In general, we propose a program of finding canonical metrics on canonical models of projective varieties of positive Kodaira dimension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.