Abstract

BackgroundThe contribution of particular hydrogen bonds to the stability of a protein fold can be investigated experimentally as well as computationally by the construction of protein mutants which lack particular hydrogen-bond donors or acceptors with a subsequent determination of their structural stability. However, the comparison of experimental data with computational results is not straightforward. One of the difficulties is related to the representation of the unfolded state conformation. MethodsA series of molecular dynamics simulations of the 34-residue WW domain of protein Pin1 and 20 amide-to-ester mutants started from the X-ray crystal structure and the NMR solution structure are analysed in terms of backbone–backbone hydrogen bonding and differences in free enthalpies of folding in order to provide a structural interpretation of the experimental data available. ResultsThe contribution of the different β-sheet hydrogen bonds to the relative stability of the mutants with respect to wild type cannot be directly inferred from experimental thermal denaturation temperatures or free enthalpies of chaotrope denaturation for the different mutants, because some β-sheet hydrogen bonds show sizeable variation in occurrence between the different mutants. ConclusionsA proper representation of unfolded state conformations appears to be essential for an adequate description of relative stabilities of protein mutants. General significanceThe simulations may be used to link the structural Boltzmann ensembles to relative free enthalpies of folding between mutants and wild-type protein and show that unfolded conformations have to be treated with a sufficient level of detail in free energy calculations of protein stability. This article is part of a Special Issue entitled Recent developments of molecular dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.