Abstract

Amides functionalities are among the most widely found groups in biologically active molecules, and their selective catalytic reduction is an important target for synthetic methods. Recent advances in base metal catalysis have identified efficient systems for selective hydrogenolysis of the amide C–N linkage. This study examines in detail the mechanism for deaminative hydrogenation of formanilide and dimethylformamide (DMF) to the corresponding amines (aniline and dimethylamine, respectively) and methanol catalyzed by (iPrPNHP)Fe(H)2(CO) (iPrPNHP = HN{CH2CH2(PiPr2)}2) using density functional theory (DFT) calculations and microkinetic modeling. Following an initial hydrogenation of the amide carbonyl group, protonolysis of the C–N bond of the hemiaminal intermediate produces amine and formaldehyde, which is further hydrogenated to methanol. Remarkably, protonolysis of the C–N bond of the hemiaminal intermediate follows different pathways, depending on the nature of the substrate and the experimental condi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.