Abstract

Fatty acid synthase (FAS) is a key enzyme in the lipid synthesis pathway, however, its roles in insects remain largely unknown. Here, we firstly identified two FAS genes from the transcriptome dataset of the general cutworm Spodoptera litura, which is a destructive insect pest of many crops. Both SlFAS1 and SlFAS2 were highly expressed in third instar larvae and in their fat bodies. Then, we successfully silenced SlFAS1 in third instar larvae and the content of α-linolenic acid and triglyceride was significantly decreased. Besides that, the effect of FAS on the metamorphic development in S. litura was evaluated. The results indicate that after silencing SlFAS1, the survival rates of S. litura larvae decreased significantly compared to the control groups. Silencing SlFAS1 in fifth instar larvae resulted in more malformed pupae and adults, and the emergence rates were significantly reduced. Furthermore, the ecdysone content in the haemolymph of fifth instar larvae was significantly decreased after silencing SlFAS1. In addition, knocking down SlFAS1 significantly alters the expression of other key genes in the lipogenesis pathway, implying that FAS has an impact on the lipogenesis pathway. The present study deepens the understanding of FAS in insects and provides novel potential targets for managing insect pests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call