Abstract
It is apparent that technological development depends on advances in the field of materials. One may design most durable and highly efficient automobile or aircraft; however, without appropriate materials to fulfill the design requirements, the product may not be realistic. Therefore, to enhance the performance of engineering materials in line with technological development, engineers and scientists are always striving to improve existing materials or to produce new materials. Metal Matrix Composites (MMCs) are example of such newly emerging engineering materials. However, MMCs are more expensive than their competitors. Cost is the key factor for their wider application in modern industry. Cost reductions can be achieved by cheaper reinforcements, simpler fabrication methods, and higher production volume. Refractory particles are relatively cheaper and easily available reinforcements. Particulate reinforced MMCs are economically processed through the stir casting route. However, in stir casting process, there are lots of processing challenges, such as undesirable interfacial reactions, porosity, uneven distribution, agglomeration, engulfment, and poor wettability. The purpose of this review is therefore to provide a reliable scientific basis for the researchers planning to synthesize particulate reinforced MMC in stir casting route.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.