Abstract

BackgroundAseptic Loosening (AL) following periprosthetic osteolysis is the main long-term complication after total joint arthroplasty (TJA). However, there is rare effective treatment except for revision surgery, which is costly and painful to the patients. In recent years, the ketone body β-hydroxybutyrate (BHB) has attracted much attention and has been proved to be beneficial in many chronic diseases. With respect to the studies on the ketone body β-hydroxybutyrate (BHB), its anti-inflammatory ability has been widely investigated. Although the ketone body β-hydroxybutyrate has been applied in many inflammatory diseases and has achieved considerable therapeutic efficacy, its effect on wear particles induced osteolysis is still unknown.ResultsIn this work, we confirmed that the anti-inflammatory action of β-hydroxybutyrate (BHB) could be reappeared in CoCrMo alloy particles induced osteolysis. Mechanistically, the ketone body β-hydroxybutyrate (BHB) deactivated the activation of NLRP3 inflammasome triggered by CoCrMo alloy particles. Of note, this inhibitory action was independent of Gpr109a receptor as well as histone deacetylase (HDAC) suppression. Furthermore, given that butyrate, one kind of short chain fatty acid (SCFA) structurally related to β-hydroxybutyrate (BHB), has been reported to be an inhibitor of osteoclast, thus we also investigate the effect of β-hydroxybutyrate (BHB) on osteoclast, which was contributed to bone resorption. It was found that β-hydroxybutyrate (BHB) did not only affect osteoclast differentiation, but also inhibit its function. Unlike the inflammasome, the effect of β-hydroxybutyrate (BHB) on osteoclast may mainly rely on histone deacetylase (HDAC) suppression.ConclusionsIn general, our study showed that the alleviation of osteolysis may owe to the effect of β-hydroxybutyrate (BHB) on inflammasome deactivation and osteoclast.Graphical

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.