Abstract

We study motion of charged test particles, or electrogeodesics, in the Kerr–Newman–(anti-)de Sitter spacetime. We focus on the equatorial plane and the axis of symmetry where the analysis is considerably simpler. The electric charge opens up the possibility of new types of trajectories, particularly stationary points where the particle can remain indefinitely. It also influences the stability of the orbits, which can be interesting from the point of view of observations. We review the basic properties of the spacetime—the structure of its horizons, the extremal cases, the possibility of over-extreme rotation, regions admitting closed timelike curves, and the turnaround radius, among other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.