Abstract

We consider the parameter space [Formula: see text] of smooth plane curves of degree [Formula: see text]. The universal smooth plane curve of degree [Formula: see text] is a fiber bundle [Formula: see text] with fiber diffeomorphic to a surface [Formula: see text]. This bundle gives rise to a monodromy homomorphism [Formula: see text], where [Formula: see text] is the mapping class group of [Formula: see text]. The main result of this paper is that the kernel of [Formula: see text] is isomorphic to [Formula: see text], where [Formula: see text] is a free group of countably infinite rank. In the process of proving this theorem, we show that the complement [Formula: see text] of the hyperelliptic locus [Formula: see text] in Teichmüller space [Formula: see text] has the homotopy type of an infinite wedge of spheres. As a corollary, we obtain that the moduli space of plane quartic curves is aspherical. The proofs use results from the Weil–Petersson geometry of Teichmüller space together with results from algebraic geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.