Abstract

The Kenna ureilite was found in February, 1972 near the town of Kenna, Roosevelt County, New Mexico U.S.A., weighed 10.9 kg, and measured 26.7 × 14.7 × 14.2 cm; it is the seventh known ureilite. The meteorite is composed of xenoblastic olivine (Fo 79.2), commonly rimmed by forsterite (Fo 99), and pigeonite (En 73Wo 9Fs 18), in a volumetric ratio of 3:1, set in a matrix of three carbon polymorphs (graphite, lonsdaleite, and diamond) plus nickel-iron metal and troilite. Some thin metalliferous veins penetrating silicate grains contain secondary inclusions of melt with high-calcium clinopyroxene (high-Ca, Mg-rich augite to augite), andesine, K-feldspar, chromite, and siliceous CaO- and alkali-rich glasses of variable compositions. Textural, mineralogical and fabric information suggest a complex history for Kenna, involving igneous, metamorphic and shock processes. The rock appears to have originated as an ultramafic cumulate whose texture and structure was modified by adcumulus processes and by solution and redeposition in a weak deviatoric stress field. A strong mineral elongation lineation was produced during this high-temperature phase accompanied by mild plastic deformation of olivine on the system 0kl[100]. Superimposed on this original texture and fabric are processes resulting from light to moderate (50–250 kbar) shock deformation, as manifested by fracturing of the silicates, slip parallel to (001) in olivine, and twin and translation gliding parallel to (100) in the clinopyroxene. Lonsdaleite and diamond probably formed during this shock phase, which may be associated with the break-up of the parent body, but the relative time of introduction of the carbon-rich matrix is still unresolved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call