Abstract

AbstractWe study minimizers of the Dirichlet φ‐energy integral with generalized Orlicz growth. We prove the Kellogg property, the set of irregular points has zero capacity, and give characterizations of semiregular boundary points. The results are new ever for the special cases double phase and Orlicz growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.