Abstract

We show that if for any two elementary equivalent structures $\mathbf M, \mathbf N$ of size at most continuum in a countable language, $\mathbf M^{\omega }/ \mathcal U \simeq \mathbf N^\omega / \mathcal U$ for some ultrafilter $\mathcal U$ on $\omega ,$ t

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.