Abstract

ObjectiveTo investigate the mechanisms of ATR-induced dopaminergic toxicity by microglia activation and the response of the Keap1/ Nrf2- ARE signaling pathway. MethodsWistar rats were treated with 50, 100 and 200 mg/kg ATR and BV-2 microglia cells were treated with 50, 100 μM ATR or 100 ng/mL LPS, respectively. Rats behavioral responses and histopathological changes were monitored. Immunohistochemical and immunofluorescence analysis detected Iba-1 and TH+ cells in rats. Keap1/Nrf2-ARE signaling-related proteins and inflammatory factors from BV-2 cells and rats were detected using ELISA, Western blot and Real-time PCR. ResultsAfter ATR treatment, the grip strength of Wistar rats was significantly decreased, and anxiety were clearly observed. TH+ neurons were reduced, however, the number of microglia cells and Iba-1 levels were increased clearly in SN. The release of ROS, TNF-α and IL-Iβ were increased, and levels of SOD and GSH-Px were significantly decreased. Keap1 mRNA expression and protein levels were decreased, while nuclear Nrf2 mRNA expression and protein levels were both increased in vivo and in vitro. ConclusionATR could significantly activate microglia and exacerbate neurotoxicity and neuroinflammation, leading to accelerate dopaminergic neuron cell death by inhibiting Keap1/Nrf2-ARE signaling pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.