Abstract

Abstract There is substantial and growing observational evidence from the normalized luminosity density in the near-infrared that the local universe is underdense on scales of several hundred megaparsecs. We test whether our parameterization of the observational data of such a “void” is compatible with the latest supernovae type Ia data and with constraints from line-of-sight peculiar-velocity motions of galaxy clusters with respect to the cosmic microwave background rest-frame, known as the linear kinematic Sunyaev–Zel’dovich (kSZ) effect. Our study is based on the large local void (LLV) radial profile observed by Keenan, Barger, and Cowie (KBC) and a theoretical void description based on the Lemaître–Tolman–Bondi model with a nonzero cosmological constant (ΛLTB). We find consistency with the measured luminosity distance–redshift relation on radial scales relevant to the KBC LLV through a comparison with 217 low-redshift supernovae type Ia over the redshift range . We assess the implications of the KBC LLV in light of the tension between “local” and “cosmic” measurements of the Hubble constant, H 0. We find that when the existence of the KBC LLV is fully accounted for, this tension is reduced from to . We find that previous linear kSZ constraints, as well as new ones from the South Pole Telescope and the Atacama Cosmology Telescope, are fully compatible with the existence of the KBC LLV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call