Abstract
Introduction (problem statement and relevance). Currently, one of the main and promising directions in the automotive industry is the development of the electric vehicle and charging infrastructure sector. The constant tightening of environmental requirements, the development of traction batteries (TAB) and automotive electronics are the main factors in the development of wheeled electric vehicles. The operation of electric buses on urban routes in modern cities is one of the promising developments of electric buses use. But the problem is, the TAB capacity, its resource and cost are still limited, therefore a key task in the development of an electric vehicles the choice of the most effective control algorithms and components of the traction electric drive (TED). The solution to this problem requires working out a simulation model, the accuracy and complexity of which must satisfy the chosen goal.The purpose of the study was to develop and verify a KAMAZ 6282 electric bus simulation model basing on experimental data.Methodology and research methods. The article presents an experimental and calculated data analysis of the main electric bus movement modes when driving in a city: acceleration, coasting, braking, upward movement.Scientific novelty and results. Basing on comparing the experimental and calculated data results, it has been determined that the presented simulation model of the electric bus was sufficient and adequate to determine the main performance indicators of the TED.Practical significance. The presented simulation model made it possible to analyze the performance indicators, on the basis of which the selection of the optimal TED components could be carried out. The simplicity of the simulation model allowed it to be used as part of optimal control algorithms and evaluate the electric bus movement along a city route.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.