Abstract

A new integrable and nonlinear partial differential equation (PDE) in 2+1 dimensions is obtained, by an asymptotically exact reduction method based on Fourier expansion and spatiotemporal rescaling, from the Kadomtsev–Petviashvili equation. The integrability property is explicitly demonstrated, by exhibiting the corresponding Lax pair, that is obtained by applying the reduction technique to the Lax pair of the Kadomtsev–Petviashvili equation. This model equation is likely to be of applicative relevance, because it may be considered a consistent approximation of a large class of nonlinear evolution PDEs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.