Abstract

Multiplanet systems orbiting M dwarfs provide valuable tests of theories of small-planet formation and evolution. K2-3 is an early M dwarf hosting three small exoplanets (1.5–2.0 R ⊕) at distances of 0.07–0.20 au. We measure the high-energy spectrum of K2-3 with HST/COS and XMM-Newton and use empirically driven estimates of Lyα and extreme-ultraviolet flux. We use EXOFASTv2 to jointly fit radial velocity, transit, and spectral energy distribution data. This constrains the K2-3 planet radii to 4% uncertainty and the masses of K2-3b and c to 13% and 30%, respectively; K2-3d is not detected in radial velocity measurements. K2-3b and c are consistent with rocky cores surrounded by solar composition envelopes (mass fractions of and ), H2O envelopes ( and ), or a mixture of both. However, based on the high-energy output and estimated age of K2-3, it is unlikely that K2-3b and c retain solar composition atmospheres. We pass the planet parameters and high-energy stellar spectrum to atmospheric models. Dialing the high-energy spectrum up and down by a factor of 10 produces significant changes in trace molecule abundances, but not at a level detectable with transmission spectroscopy. Though the K2-3 planets span the small-planet radius valley, the observed system architecture cannot be readily explained by photoevaporation or core-powered mass loss. We instead propose that (1) the K2-3 planets are all volatile-rich, with K2-3d having a lower density than typical of super-Earths, and/or (2) the K2-3 planet architecture results from stochastic processes such as planet formation, planet migration, and impact erosion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call