Abstract
In this paper the compound work function algorithm for solving the generalized k-server problem is proposed. This problem is an online k-server problem with parallel requests where several servers can also be located on one point. In 1995 Koutsoupias and Papadimitriouhave proved that the well-known work function algorithm is competitive for the (usual) k-server problem. A proof, where a potential-like function argument is included, was given by Borodinand El-Yaniv in 1998. Unfortunately, certain techniques of these proofs cannot be applied to show that a natural generalization of the work function algorithm is competitive for the problem with parallel requests. Values of work functions, which are used by the compound work function algorithm are derived from a surrogate problem, where at most one server must be moved in servicing the request in each step. We can show that the compound work function algorithm is competitive with the same bound of the ratio as in the case of the usual problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.