Abstract

The K(+)-Cl(-) cotransporter-2 (KCC2) is a well-known member of the electroneutral cation-chloride cotransporters with a restricted expression pattern to neurons. This transmembrane protein mediates the efflux of Cl(-) out of neurons and exerts a critical role in inhibitory γ-aminobutyric acidergic (GABAergic) and glycinergic neurotransmission. Moreover, KCC2 participates in the regulation of various physiological processes of neurons, including cell migration, dendritic outgrowth, spine morphology, and dendritic synaptogenesis. It is important to note that down-regulation of KCC2 is associated with the pathogenesis of multiple neurological diseases, which is of particular relevance to acute central nervous system (CNS) injury. In this review, we aim to survey the pathogenic significance of KCC2 down-regulation under the condition of acute CNS injuries. We propose that further elucidation of the molecular mechanisms regarding KCC2 down-regulation after acute CNS injuries is necessary because of potential promising avenues for prevention and treatment of acute CNS injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.