Abstract
It is well-known that applications of the JWKB method to central-field problems in three dimensions require half-integral quantization of the angular momentum for their success. Thus, the square of the angular momentum must be represented by the term (/ + ½) 2 h 2 rather than /(/ + 1)h 2 . This was first shown by Kramers in 1926 and has subsequently been discussed by several authors including, in particular, Langer (1937). While Kramers based his discussion on the ordinary radial variable r, Langer switched to the variable x defined by r = e x . In this new representation of the central-field problem, the expression (/ + ½) 2 h 2 emerges naturally. The ad hoc character of the Langer transformation has, however, often been emphasized. In the present communication, we choose a different entry to the problem. We keep the variable r and focus on physically equivalent forms of the radial Schrodinger equation in this variable. This leads to a smoother emergence of the (/ + ½) 2 h 2 term. Our analysis is carried out for a general dimension D. For a given D, there are D physically equivalent radial equations, corresponding to the subdimensions d = 1, 2..., D. We show that it is only the d = 2 equation that can be satisfactorily treated by the JWKB approximation. In the past, the focus was always on the d = I equation, and this was the reason behind the problems encountered by Kramers and Langer. As to the d = 2 equation, we finally show that this equation also is the most convenient starting point for determining the exact solutions of a central-field problem for general values of D and angular-momentum quantum number L.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.