Abstract

Endonuclease I is a DNA junction-selective resolving enzyme from bacteriophage T7. Using a nuclease-defective mutant that retains normal binding to DNA we show that the protein binds to four-way DNA junctions as a dimer, in common with other junction-resolving enzymes studied. Gel filtration and chemical crosslinking indicate that endonuclease I also exists in free solution as a dimer together with a tetramer and higher molecular mass aggregates. However, in marked contrast with other junction-resolving enzymes, there is no detectable subunit exchange under normal conditions. Only by exposure to 6 M urea could we induce subunit exchange, and this was used to generate heterodimeric species containing one active and one inactive subunit. Using a supercoil-stabilised cruciform substrate we demonstrate that an active subunit of endonuclease I can act as a junction-specific nuclease in a heterodimeric combination with an inactive subunit. However, the two subunits of a fully active homodimeric enzyme each cleave the phosphodiester backbone of a cruciform within the lifetime of the DNA-protein complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.