Abstract

A given square complex matrix C is the product of a positive semidefinite matrix A and a Hermitian matrix B if and only if C 2 is diagonalizable and has nonnegative eigenvalues. This condition is equivalent to requiring that C have real eigenvalues and a Jordan canonical form that is diagonal except for r copies of a 2-by-2 nilpotent Jordan block. We show that r is bounded from above by the rank of A, the nullity of A, and both the positive and negative inertia of B. It follows that a product of two positive semidefinite matrices is diagonalizable and has nonnegative eigenvalues, a result that leads to a characterization of the possible concanonical forms of a positive semidefinite matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.